

UriRegistry

This project aims to provide a central location for keeping track of different
resources through their URI’s. It has been designed to answer one simple
question: in which applications is a certain resource (ie. a URI) being used?

	Introduction

	Architecture
	Schema

	pyramid_urireferencer

	Services
	UriRegistry

	Pyramid_urireferencer

	Development
	Setting up a development environment

	Configuring a UriRegistry

	Testing

	Adding pyramid_urireferencer to an application

	API Documentation
	uriregistry

	pyramid_urireferencer

	History
	0.3.1 (16-08-2022)

	0.3.0 (21-02-2022)

	0.2.0 (07-12-2020)

	0.1.2 (08-06-2017)

	0.1.1 (04-08-2015)

	0.1.0 (11-06-2015)

Indices and tables

	Index

	Module Index

	Search Page

Introduction

This project, UriRegistry, aims to solve one (and only one) problem that can
arrise when working with distributed systems. Is one of my resources being used
somewhere? This can be especially important when we want to delete a certain
resource. While in typical RESTful fashion, we cannot guarantuee a client that a
certain resource will keep on existing indefinitely, it can be a good thing to
let our end-users know that the resource is currently in use somewhere.

The basic idea is quite simple. Every application has an endpoint that can be
used by clients to ask if a certain URI is in use in that application. The
application replies if that is the case and if so with some information where
that might be the case.

Finally, there’s a separate application, the UriRegistry, that can serve as a
single point of access. To ensure that a client does not need to know all the
applications that might be using one of it’s resources, we use a central
registry. This central registry knows which URI is use in which application,
queries the applications in questions, gathers and tallies the results and
presents these to the client. The client itself only needs to know where the
central registry is. The registry takes care of the rest.

Architecture

Schema

[image: @startuml package "Client" as AB{ interface " " as START [pyramid_urireferencer] as RP START -> RP } node "UriRegistry" as UR{ [Registry] as REG } package "Application 1" as A1{ [pyramid_urireferencer] as RP1 } package "Application 2" as A2{ [pyramid_urireferencer] as RP2 } RP -> REG REG -> RP1 REG -> RP2 RP1 -> REG RP2 -> REG REG -> RP @enduml]

A client queries the registry with a certain URI, eg.
http://id.erfgoed.net/foo/bar. The registry checks if it knows any
applications that might be using this URI. It discovers that two applications
could possibly be using it. Both applications are queried. In each application a
pyramid_urireferencer.referencer.AbstractReferencer has been configured
that can check if an incomming URI is in use in the application. The results are
sent back to the registry. The registry tallies the results and aggregates them.
A final response is sent back to the client.

pyramid_urireferencer

This pluging will expose a service at /references. This service endpoint will take a
single parameter, uri. A full request looks like eg.
/references?uri=http://id.erfgoed.net/besluiten/1. Within the application, a
check will be executed to see if the application keeps references to this
particular URI.

The plugin also provides a method
pyramid_urireferencer.referencer.Referencer.is_referenced() that can be
used to contact the central registry to see if a certain URI is in use
somewhere. This method requires a function pyramid_urireferencer.referencer.Referencer.get_uri()
to determine the uri of the current request.

Services

UriRegistry

The central UriRegistry has a single endpoint that can be called.

	
GET /references

	Query the registry to see if and possibly where a URI is in use.

Structure of a response:

	query_uri - the URI we’re looking for

	
	success - Did the registry succeed in querying the underlying
	services. Will be True if all requests succeeded, else False.

	
	has_references - Will be True as soon as one application has at
	least one reference to the item in question.

	count - How many references were found in total?

	applications - A list of all applications that were queries and the results they returned

	title - A title for the application

	service_url - Url of the application’s references service

	uri - Uri of the application. Does not need to be a http uri.

	success - Will be True if the request for this application succeeded, else False.

	has_references - Will be True if at least one reference was found. If the request failed, this will be None. Not False.

	count - Returns the number of references found. If the request failed (success==`False`), this will be None.

	items - A list of resoures that have a reference to the URI in question. For performance reasons, a maximum of 5 resources is allowed. If the request failed, this will be None.

	title - Title of the resource

	uri - Uri of the resource

Example request:

GET /references?uri=http://id.erfgoed.net/foobar/2
Host: uriregistry.org
Accept: application/json

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "query_uri": "http://id.erfgoed.net/foobar/2",
 "success": true,
 "has_references": true,
 "count": 8,
 "applications": [
 {
 "count": 8,
 "title": "app1",
 "success": true,
 "has_references": true,
 "uri": "http://www.erfgoed.net",
 "service_url": "http://www.erfgoed.net/references",
 "items": [
 {
 "name": "itemname1",
 "uri": "http://www.erfgoed.net/baz/1"
 }, {
 "name": "itemname_2",
 "uri": "http://www.erfgoed.net/baz/10"
 }, {
 "name": "itemname_3",
 "uri": "http://www.erfgoed.net/baz/14"
 }, {
 "name": "itemname_4",
 "uri": "http://www.erfgoed.net/baz/34"
 }
],
 }, {
 "count": null,
 "title": "app2",
 "success": false,
 "has_references": null,
 "service_url": "http://something.erfgoed.net/references",
 "uri": "http://something.erfgoed.net",
 "items": null
 }
],
}

	Query Parameters

	
	uri – The uri of the resource the client wants information on. Required.

	Status Codes

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – The service has a valid answer

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – There’s something wrong with the request, eg. no URI parameter present.

Pyramid_urireferencer

Every application that implements pyramid_urireferencer has the samen
endpoint as the central registry, but with a slightly different response set.

	
GET /references

	Query the application to see if and possibly where a certain URI is in use.

Example request:

GET /references?uri=http://id.erfgoed.net/foobar/2
Host: www.erfgoed.net
Accept: application/json

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "count": 8,
 "title": "app1",
 "success": true,
 "has_references": true,
 "uri": "http://www.erfgoed.net",
 "service_url": "http://www.erfgoed.net/references",
 "items": [
 {
 "name": "itemname1",
 "uri": "http://www.erfgoed.net/baz/1"
 }, {
 "name": "itemname2",
 "uri": "http://www.erfgoed.net/baz/10"
 }, {
 "name": "itemname3",
 "uri": "http://www.erfgoed.net/baz/14"
 }, {
 "name": "itemname4",
 "uri": "http://www.erfgoed.net/baz/34"
 }
]
}

	Query Parameters

	
	uri – The uri of the resource the client wants information on. Required.

	Status Codes

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – The service has a valid answer

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – There’s something wrong with the request, eg. no URI parameter present.

Development

Setting up a development environment

Check out the code.

$ git clone https://github.com/OnroerendErfgoed/uriregistry.git

Create a virtual environment (require virtualenvwrapper).

Create a new environment
$ mkvirtualenv uriregistry
Activate an existing environment
$ workon uriregistry

Install requirements.

$ pip install -r requirements-dev.txt
$ python setup.py develop

Run the application with the sample config sample.yaml.

$ pserve development.ini

Point your browser at http://localhost:6543 to see it in action!

Configuring a UriRegistry

Your UriRegistry can be configured with a YAML file. By default, a file
sample.yaml in the uriregistry package is used, but you can change
this withing your own development.ini.

uriregistry.config = %(here)s/myapp.yaml

In this config file you specify which applications can be called by the registry
when looking for URI’s in use. You can also specify for each URI template in
what application it might be found.

applications:
 - uri: http://localhost:5555
 name: app1
 service_url: http://localhost:5555/references
 - uri: http://localhost:2222
 name: app2
 service_url: http://localhost:2222/references
uri_templates:
 - match_uri: http://id.erfgoed.net/foobar/\d+
 applications:
 - http://localhost:5555
 - http://localhost:2222
 - match_uri: http://id.erfgoed.net/bar/\w+
 applications:
 - http://localhost:5555
 - match_uri: http://id.erfgoed.net/foo/.+
 applications:
 - http://localhost:2222

Testing

Tests are run with pytest. We support the last python 2.x release and the two
most current python 3.x release. To make testing easier, use tox.

Run all tests for all environments
$ tox
No coverage
$ py.test
Coverage
$ py.test --cov uriregistry --cov-report term-missing tests

Adding pyramid_urireferencer to an application

When you want to add an application to the network of applications, you need to
include the pyramid_urireferencer library. Add it to your
requirements.txt and setup.py requirements.

Add the library to your application by including the following in your main:

config.include('pyramid_urireferencer')

Now you need to configure your application. Edit your development.ini
and add two configuration options.

settings for the urireferencer
A dotted name indicating where your referencer can be found
urireferencer.referencer = myapp.referencer.MyReferencer
The url pointing towards your own UriRegistry
urireferencer.registry_url = http://localhost:6543

Of course, you also need to write this referencer. To do this, create an object
that implements the abstract
pyramid_urireferencer.referencer.AbstractReferencer. Depending on your
needs it might be easier to extend the
pyramid_urireferencer.referencer.Referencer. This class already
has a is_referenced()
method. But the method requires a function get_uri() to determine the uri of the current request.
The get_uri() still needs to be implemented. The referencer also requires you to implement the
references() method.

from pyramid_urireferencer.referencer import Referencer
from pyramid_urireferencer.models import ApplicationResponse

class DemoReferencer(Referencer):

 def get_uri(self, request):
 id = request.matchdict['id']
 if request.data_manager.get(aid).type == 'cirkel':
 return request.registry.settings['cirkel.uri'].format(id)
 else:
 return request.registry.settings['square.uri'].format(id)

 def references(self, uri):
 try:
 # Generate a demo response
 has_references = True
 count = 8
 items = []
 for x in range(1, 5):
 items.append(Item("itemname_" + str(x), "http://demo_uri/" + str(x)))
 success = True
 except:
 has_references = None
 count = None
 items = None
 success = False
 return ApplicationResponse(
 'My application',
 'http://app.me',
 'http://app.me/references',
 success,
 has_references,
 count,
 items
)

API Documentation

uriregistry

	
uriregistry._load_configuration(path)

	Load the configuration for the UriRegistry.

	Parameters

	path (str) – Path to the config file in YAML format.

	Returns

	A dict with the config options.

	
uriregistry._parse_settings(settings)

	Parse the relevant settings for this application.

	Parameters

	settings (dict) –

	
uriregistry.main(global_config, **settings)

	This function returns a Pyramid WSGI application.

	Parameters

	global_config (pyramid.config.Configurator) –

Models module

	
class uriregistry.models.Application(uri, title, service_url)

	Represents the config for an application.

	Parameters

	
	uri (string) – A uri that identifies the application

	title (string) – A title for the application

	service_url (string) – The url for the service that can be queried

	
class uriregistry.models.UriTemplate(match_uri, applications)

	Represents the config for a certain uri template.

	Parameters

	
	match_uri (string) – A regex that needs to be matched.

	applications (list) – A list of application uri’s.

	
matches(uri)

	Does the URI match this template?

	Parameters

	uri (string) – URI to be matched

	Return type

	boolean

Registry module

	
class uriregistry.registry.UriRegistry(applications=[], uris=[])

	Central registry that tracks uris and the applications they are being used in.

	
get_applications(uri)

	Get all applications that might have a reference to this URI.

	Parameters

	uri (string) – Uri for which the applications need to be found.

	
uriregistry.registry._build_uri_registry(registry, registryconfig)

	
	Parameters

	
	registry (pyramid.registry.Registry) – Pyramid registry

	registryconfig (dict) – UriRegistry config in dict form.

	Return type

	uriregistry.registry.UriRegistry

	
uriregistry.registry.get_uri_registry(registry)

	Get the uriregistry.registry.UriRegistry attached to this pyramid
application.

	Return type

	uriregistry.registry.UriRegistry

Views module

	
uriregistry.views._get_registry_response(application_responses, uri)

	Generate the final response by aggregating all the application responses.

	Parameters

	
	application_responses (list) – All pyramid_urireferencer.models.ApplicationResponse instances.

	uri (str) – Uri that was evaluated

	base_uri (str) – Base uri of the uri that was evaluated

	Returns

	pyramid_urireferencer.models.RegistryResponse with all information the registry has collected

Utils module

	
uriregistry.utils.query_application(app, uri)

	Checks if a certain app has references to a URI.

	Parameters

	
	uriregistry.models.Application – The application to be evaluated

	uri – The uri that has to be checked

	Rtype pyramid_urireferencer.models.ApplicationResponse

	

pyramid_urireferencer

	
pyramid_urireferencer._add_referencer(registry)

	Gets the Referencer from config and adds it to the registry.

	
pyramid_urireferencer.get_referencer(registry)

	Get the referencer class

	Return type

	pyramid_urireferencer.referencer.AbstractReferencer

	
pyramid_urireferencer.includeme(config)

	this function adds some configuration for the application

Models module

	
class pyramid_urireferencer.models.ApplicationResponse(title, uri, service_url, success, has_references, count, items)

	Represents what a certain application will send back to the registry when
asked if a certain uri is used by the application.

	Parameters

	
	title (string) – Title of the application

	uri (string) – A uri for the application, not guaranteed to be a http url.

	service_url (string) – The url that answered the question

	success (boolean) – Was the querie successful?

	has_references (boolean) – Were any references found?

	count (int) – How many references were found?

	items (list) – A list of items that have a reference to the uri under survey. Limited to 5 items for performance reasons.

	
static load_from_json(data)

	Load a ApplicationResponse from a dictionary or string (that
will be parsed as json).

	
class pyramid_urireferencer.models.Item(title, uri)

	A single item that holds a reference to the queried uri.

	Parameters

	
	title (string) – Title of the item.

	uri (string) – Uri of the item.

	
static load_from_json(data)

	Load a Item from a dictionary ot string (that will be parsed
as json)

	
class pyramid_urireferencer.models.RegistryResponse(query_uri, success, has_references, count, applications)

	Represents what the registry will send back to a client when asked if
a certain uri is used somewhere.

	Parameters

	
	query_uri (string) – Uri of the resource unser survey.

	success (boolean) – Were all the queries successful?

	has_references (boolean) – Were any references found?

	count (int) – How many references were found?

	applications (list) – A list of application results.

	
static load_from_json(data)

	Load a RegistryReponse from a dictionary or a string (that
will be parsed as json).

Protected resources module

Thids module is used when blocking operations on a certain uri
that might be used in external applications.
.. versionadded:: 0.4.0

	
pyramid_urireferencer.protected_resources.protected_operation(fn)

	Use this decorator to prevent an operation from being executed
when the related uri resource is still in use.
The parent_object must contain:

	
	a request
	
	with a registry.queryUtility(IReferencer)

	Raises

	
	pyramid.httpexceptions.HTTPConflict – Signals that we don’t want to
delete a certain URI because it’s still in use somewhere else.

	pyramid.httpexceptions.HTTPInternalServerError – Raised when we were
unable to check that the URI is no longer being used.

	
pyramid_urireferencer.protected_resources.protected_operation_with_request(fn)

	Use this decorator to prevent an operation from being executed
when the related uri resource is still in use.
The request must contain a registry.queryUtility(IReferencer)
:raises pyramid.httpexceptions.HTTPConflict: Signals that we don’t want to

delete a certain URI because it’s still in use somewhere else.

	Raises

	pyramid.httpexceptions.HTTPInternalServerError – Raised when we were
unable to check that the URI is no longer being used.

	
pyramid_urireferencer.protected_resources.protected_view(view, info)

	allows adding protected=True to a view_config`

Referencer module

	
class pyramid_urireferencer.referencer.AbstractReferencer

	This is an abstract class that defines what a Referencer needs to be able to handle.

It does two things:

	Check if a uri is being used in this application and report on this.

	Check if a certain uri is being used in another application by query
a central registry.
* this requires a function get_uri() to determine the uri of the current request

	
abstract get_uri(request)

	This method extracts a uri from the request. This is the uri that needs to be checked.

	Parameters

	request – pyramid.request.Request with useful configuration information and connections
of the application (registry, route_url, session) to determine the references

	Return type

	string uri: URI of the resource we need to check for

	
abstract is_referenced(uri)

	This method checks if a certain uri is being referenced from resources
in other applications.

	Parameters

	uri (string) – URI of the resource that needs to be checked

	Return type

	pyramid_urireferencer.models.RegistryResponse

	
abstract references(uri, request)

	This method checks if a certain uri is being referenced by any other
resource within this application.

	Parameters

	
	uri (string) – URI of the resource we need to check for

	request – pyramid.request.Request with useful configuration information and connections
of the application (registry, route_url, session) to determine the references

	Return type

	pyramid_urireferencer.models.ApplicationResponse

	
class pyramid_urireferencer.referencer.Referencer(registry_url, **kwargs)

	This is an implementation of the AbstractReferencer that adds a
generic is_referenced() method and plain methods: references() and get_uri()

	
is_referenced(uri)

	This method checks if a certain uri is being referenced from resources
in other applications.

	Parameters

	uri (string) – URI of the resource that needs to be checked

	Return type

	pyramid_urireferencer.models.RegistryResponse

Rendererers module

	
pyramid_urireferencer.renderers.application_adapter(obj, request)

	Adapter for rendering a pyramid_urireferencer.models.ApplicationResponse to json.

	Parameters

	obj (pyramid_urireferencer.models.ApplicationResponse) – The response to be rendered.

	Return type

	dict

	
pyramid_urireferencer.renderers.registry_adapter(obj, request)

	Adapter for rendering a pyramid_urireferencer.models.RegistryResponse to json.

	Parameters

	obj (pyramid_urireferencer.models.RegistryResponse) – The response to be rendered.

	Return type

	dict

Views module

History

0.3.1 (16-08-2022)

	Avoid “max_workers must be greater than 0”-Exception in case no applications are listed in the configurarion (#97)

0.3.0 (21-02-2022)

	Improved performance (#8)

	Pyramid 2.0 upgrade (#85)

0.2.0 (07-12-2020)

	Library update(#69)

	Py3 compatibel maken (#66)

0.1.2 (08-06-2017)

	Make compatible with Python 3.5

	Update pyramid_urireferencer to 0.6.0 (#9)

0.1.1 (04-08-2015)

	Update pyramid_urireferencer to 0.4.0

0.1.0 (11-06-2015)

	Initial version

	Works with pyramid_urireferencer 0.2.0.

 HTTP Routing Table

 /references

 		 	

 		
 /references	

 	
 	
 GET /references	

 Python Module Index

 p |
 u

 		 	

 		
 p	

 	[image: -]
 	
 pyramid_urireferencer	

 	
 	
 pyramid_urireferencer.models	

 	
 	
 pyramid_urireferencer.protected_resources	

 	
 	
 pyramid_urireferencer.referencer	

 	
 	
 pyramid_urireferencer.renderers	

 	
 	
 pyramid_urireferencer.views	

 		 	

 		
 u	

 	[image: -]
 	
 uriregistry	

 	
 	
 uriregistry.models	

 	
 	
 uriregistry.registry	

 	
 	
 uriregistry.utils	

 	
 	
 uriregistry.views	

Index

 _
 | A
 | G
 | I
 | L
 | M
 | P
 | Q
 | R
 | U

_

 	
 	_add_referencer() (in module pyramid_urireferencer)

 	_build_uri_registry() (in module uriregistry.registry)

 	
 	_get_registry_response() (in module uriregistry.views)

 	_load_configuration() (in module uriregistry)

 	_parse_settings() (in module uriregistry)

A

 	
 	AbstractReferencer (class in pyramid_urireferencer.referencer)

 	Application (class in uriregistry.models)

 	
 	application_adapter() (in module pyramid_urireferencer.renderers)

 	ApplicationResponse (class in pyramid_urireferencer.models)

G

 	
 	get_applications() (uriregistry.registry.UriRegistry method)

 	get_referencer() (in module pyramid_urireferencer)

 	
 	get_uri() (pyramid_urireferencer.referencer.AbstractReferencer method)

 	get_uri_registry() (in module uriregistry.registry)

I

 	
 	includeme() (in module pyramid_urireferencer)

 	is_referenced() (pyramid_urireferencer.referencer.AbstractReferencer method)

 	(pyramid_urireferencer.referencer.Referencer method)

 	
 	Item (class in pyramid_urireferencer.models)

L

 	
 	load_from_json() (pyramid_urireferencer.models.ApplicationResponse static method)

 	(pyramid_urireferencer.models.Item static method)

 	(pyramid_urireferencer.models.RegistryResponse static method)

M

 	
 	main() (in module uriregistry)

 	matches() (uriregistry.models.UriTemplate method)

 	
 module

 	pyramid_urireferencer

 	pyramid_urireferencer.models

 	pyramid_urireferencer.protected_resources

 	pyramid_urireferencer.referencer

 	pyramid_urireferencer.renderers

 	pyramid_urireferencer.views

 	uriregistry

 	uriregistry.models

 	uriregistry.registry

 	uriregistry.utils

 	uriregistry.views

P

 	
 	protected_operation() (in module pyramid_urireferencer.protected_resources)

 	protected_operation_with_request() (in module pyramid_urireferencer.protected_resources)

 	protected_view() (in module pyramid_urireferencer.protected_resources)

 	
 pyramid_urireferencer

 	module

 	
 pyramid_urireferencer.models

 	module

 	
 	
 pyramid_urireferencer.protected_resources

 	module

 	
 pyramid_urireferencer.referencer

 	module

 	
 pyramid_urireferencer.renderers

 	module

 	
 pyramid_urireferencer.views

 	module

Q

 	
 	query_application() (in module uriregistry.utils)

R

 	
 	Referencer (class in pyramid_urireferencer.referencer)

 	references() (pyramid_urireferencer.referencer.AbstractReferencer method)

 	
 	registry_adapter() (in module pyramid_urireferencer.renderers)

 	RegistryResponse (class in pyramid_urireferencer.models)

U

 	
 	
 uriregistry

 	module

 	UriRegistry (class in uriregistry.registry)

 	
 uriregistry.models

 	module

 	
 uriregistry.registry

 	module

 	
 	
 uriregistry.utils

 	module

 	
 uriregistry.views

 	module

 	UriTemplate (class in uriregistry.models)

 nav.xhtml

 Table of Contents

 		
 UriRegistry

 		
 Introduction

 		
 Architecture

 		
 Schema

 		
 pyramid_urireferencer

 		
 Services

 		
 UriRegistry

 		
 Pyramid_urireferencer

 		
 Development

 		
 Setting up a development environment

 		
 Configuring a UriRegistry

 		
 Testing

 		
 Adding pyramid_urireferencer to an application

 		
 API Documentation

 		
 uriregistry

 		
 Models module

 		
 Registry module

 		
 Views module

 		
 Utils module

 		
 pyramid_urireferencer

 		
 Models module

 		
 Protected resources module

 		
 Referencer module

 		
 Rendererers module

 		
 Views module

 		
 History

 		
 0.3.1 (16-08-2022)

 		
 0.3.0 (21-02-2022)

 		
 0.2.0 (07-12-2020)

 		
 0.1.2 (08-06-2017)

 		
 0.1.1 (04-08-2015)

 		
 0.1.0 (11-06-2015)

_images/plantuml-5f69a670cdaf55bda953c73f48d93ba24782c92d.png
pyramid_urireferencer I pyramid_urireferencer I

_plantuml/5f/5f69a670cdaf55bda953c73f48d93ba24782c92d.png
pyramid_urireferencer I pyramid_urireferencer I

_static/plus.png

_static/file.png

_static/minus.png

